
1.  Introduction
Kinematic finite-fault modeling is one of the most widely used tools to image the evolution of earthquake 
ruptures. The finite-fault models are spatio-temporal functions that represent the evolution of slip on a 
fault. Such models are critical to understand the complexity of rupture mechanics (Causse et al., 2013; Ga-
briel et al., 2012; Heaton, 1990; Mai et al., 2016; Page et al., 2005; Thingbaijam et al., 2017; Tinti et al., 2005), 
including the evolution of slip on faults throughout the seismic cycle (Custódio & Archuleta, 2007; Freed 
& Lin, 2001) or the values and distribution of stress drop within tectonic structures (Bouchon, 1997; King 
et al., 1994; Mai & Beroza, 2000; Ripperger & Mai, 2004; Stein et al., 1997). Finite-fault models can also be 
used to develop ground-motion prediction equations (Archuleta & Ji, 2016; Atkinson & Boore, 2006; Zafara-
ni et al., 2009) or to simulate the time history of ground shaking (Beresnev & Atkinson, 1997; Mai, 2009; Mai 
et al., 2010). Moreover, these models gain value in physics-based hazard assessment, which are particularly 
important for the hazard analysis of critical facilities, like nuclear power plants (Hutchings et al., 2007, 
2018).

Abstract  Kinematic finite-fault source inversions aim at resolving the spatio-temporal evolution 
of slip on a fault given ground motion recorded on the Earth's surface. This type of inverse problem is 
inherently ill posed due to two main factors. First, the number of model parameters is typically greater 
than the number of independent observed data. Second, small singular values are generated by the 
discretization of the physical rupture process and amplify the effect of noise in the inversion. As a result, 
one can find different slip distributions that fit the data equally well. This ill posedness can be mitigated 
by decreasing the number of model parameters, hence improving their relationship to the observed data. 
In this study, we propose a fuzzy function approximation approach to describe the spatial slip function. 
In particular, we use an Adaptive Network-based Fuzzy Inference System (ANFIS) to find the most 
adequate discretization for the spatial variation of slip on the fault. The fuzzy basis functions and their 
respective amplitudes are optimized through hybrid learning. We solve this earthquake source problem 
in the frequency domain, searching for optimal spatial slip distribution independently for each frequency. 
The approximated frequency-dependent spatial slip functions are then used to compute the forward 
relationship between slip on the fault and ground motion. The method is constrained through Tikhonov 
regularization, requiring a smooth spatial slip variation. We discuss how the number of model parameters 
can be decreased, while keeping the inversion stable and achieving an adequate resolution. The proposed 
inversion method is tested using the SIV1-benchmark exercise.

Plain Language Summary  Earthquake kinematic source inversions help seismologists infer 
key features of fault ruptures from the available recorded data. The technique faces inherent ill posedness 
from the viewpoint of its mathematical formulation. Furthermore, the limited available datasets 
render the problem even more challenging. In this study, we use an adaptive function approximation 
methodology that describes slip on the fault using a reduced number of model parameters. This innovative 
formulation helps us to achieve a good balance between available data (information) and model 
parameters (unknowns). The proposed technique decreases the degree of ill posedness of the inverse 
problem by adaptively improving the slip discretization and the slip amplitude using neural network 
learning.
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Finite-fault models are obtained by inverse modeling of earthquake observations (Mai et al., 2016). In order 
to retrieve the full spatio-temporal evolution of slip, one can use records of the dynamic wavefield, such as 
seismic data (Cotton & Campillo, 1995; Custódio et al., 2005; Das & Kostrov, 1990; Ji et al., 2002a, 2002b; 
Olson & Anderson, 1988; Olson & Apsel, 1982; Twardzik et al., 2012), high-rate GNSS/GPS data (Custódio 
et al., 2009; Minson et al., 2013, 2014), or tsunami data (Satake et al., 2013). Final static displacements, 
provided by geodetic observations, like InSAR or GNSS records, can be used to map the final cumulative 
displacement on the fault (Barnhart & Lohman, 2010; Lohman & Simons, 2005; Massonnet & Feigl, 1998). 
Records of the static and dynamic fields can be jointly used to increase the stability of inversions (e.g., Her-
nandez et al., 2004; Jara et al., 2018; Nissen et al., 2019).

The governing equation that relates observations on the Earth's surface with the dislocation on the fault is 
the representation theorem of seismology (Aki & Richards, 2002). This theorem can be used to compute 
ground displacement given a fault slip model, in the context of a forward problem. In the framework of an 
inverse problem, it can be used to find the slip model that best fits the observed data using optimization 
methods (Liu & Archuleta, 2004; Olson & Apsel, 1982).

The representation theorem of seismology is expressed as a Fredholm integral equation of the first kind. 
Therefore, inverse problems based on the representation theorem are inherently ill posed (Hansen, 2005). 
The ill posedness of an inverse problem reflects the instability and nonuniqueness of its solutions. The solu-
tions of ill-posed inverse problems are very sensitive to small perturbations of the input signal, which com-
monly arise from noise in the data. In the realm of linear inverse problems, singular value decomposition 
is frequently been used to handle ill posedness (e.g., Gallovič & Ampuero, 2015). Near zero and very small 
singular values are responsible for the instability and nonuniqueness of the solution, and therefore require 
special attention (e.g., Aster et al., 2018).

An ill-posed inverse problem can be stabilized by regularization, which will approximate the ill-posed prob-
lem by a family of well-posed problems (Engl et al., 1996). In finite-fault inversion, common regularization 
approaches include damping small singular values, which reduces their impact; smoothing, which ensures 
a smooth variation of slip throughout the fault; or moment magnitude minimization, which favors slip 
distributions that fit the data with a minimum amount of seismic moment. These mathematically and 
physically motivated constraints reduce the number of preferred slip models, thus stabilizing the inversion.

In order to capture numerically the full rupture kinematics, the continuous evolution of slip on the fault 
must be discretized. The integral equation of the representation theorem can be approximated using either 
quadrature or Galerkin methods (Hansen, 2005). Kinematic finite-fault inversions typically rely on Galer-
kin-type discretizations, where the continuous slip distribution is expanded over basis functions both in 
space and in time. By discretization, the inherent difficulties of the continuous problem, which arises from 
the small singular values of the continuous Fredholm integral kernel, transfer directly to the discrete space. 
A coarse discretization transfers less small singular values than a finer discretization (Hansen, 2005).

In early methods, the continuous spatial slip distribution was simply expanded over Dirac delta basis func-
tions. Thus, the spatial slip distribution was simply the sum of slip in subfaults with constant slip (Olson 
& Apsel, 1982). The slip function was therefore approximated as a summation of 0C -continuous functions, 
that is, the resulting slip distribution was spatially discontinuous. Later, more sophisticated approaches 
approximated the spatial slip distribution using higher order basis functions, thus avoiding discontinuities 
at the edges of sub-faults. As an example, Liu and Archuleta (2004) proposed an interpolation scheme that 
resulted in a 1C -continuous description of slip in space. In this case, the interpolation scheme ensured that 
the spatial slip distribution itself was continuous. However, the slip derivatives of order 1 were still dis-
continuous. In general, higher order basis functions help the solution estimate the data more accurately.

The discretization of the evolution of slip in time approximates the source time function for each point on 
the fault, that is, the history of slip at given time steps for each subfault. The temporal basis functions can 
also be Dirac delta functions. However, a more common approach is to use elementary functions, such as 
triangular functions (Hartzell & Heaton, 1983; Olson & Apsel, 1982). Beresnev (2003) addressed well the 
shortcomings of triangular functions to expand slip-rate functions. An alternative to assuming many base 
functions to discretize slip in time is to assume that the source time function at each point on the fault has 
a predetermined shape and is fully determined by a few key functional parameters, such as rise time and 
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rupture velocity (e.g., Liu & Archuleta, 2004). In this case, the number of model parameters is strongly re-
duced, but the shape of the source time function becomes fixed a priori. Additionally, the inversion becomes 
nonlinear. Hallo and Gallovič (2020) recently proposed to use a regularized Yoffe slip-rate function (Tinti 
et al., 2005). Their method accounts for Green's function uncertainty by using a Bayesian inversion frame-
work with Markov Chain Monte Carlo (MCMC) sampling.

The methods described above rely on the time-domain formulation of the representation theorem. Alter-
natively Fan et al. (2014) used complex time-harmonic functions to approximate the time evolution of slip. 
Their method evaluated the representation theorem in the frequency domain. They took advantage of the 
fact that the time-domain convolution between source slip function and Green's functions becomes a simple 
multiplication in the frequency domain. In this article, we follow their approach, benefiting from the line-
arity of the representation theorem in the frequency domain.

As pointed out by Aster et al. (2018), the selection of appropriate basis functions for the discretization of 
an integral equation is rather an art. The selection of the basis functions has a direct effect on the degree 
of ill conditioning of the discrete inverse problem and ultimately on the quality of the solution. Such selec-
tion requires detailed knowledge of the problem and of the behavior of the basis functions. A review of a 
database of finite-fault solutions provided by Mai and Thingbaijam (2014) reveals that slip on faults often 
consists on one or two main asperities. In each asperity, the slip has its maximum value around the center 
of the asperity and decays bidirectionally on the fault surface. In this case, ellipses could be appropriate 
basis functions to describe slip on faults. Some authors have assumed that slip is localized on a few elliptical 
patches and solved the inverse problem to find only a few parameters that describe those elliptical patches 
(Di Carli et al., 2010; Twardzik et al., 2012; Vallée & Bouchon, 2004). By selecting elliptical basis functions, 
the dimension of the model space decreases considerably, in turn increasing the stability of the solution. 
In the more conventional case of constant-slip subfaults, increasing the number of sub-faults has the dis-
advantage of increasing the number of small singular values, hence worsening the ill posedness of the 
inversion and making the solution more unstable (Hansen, 2005). In general, it is possible to select a proper 
set of basis functions to discretize the model space in a way that reduces the number of model parameters, 
thus increasing the stability of the solution. In this article, we propose a new method that finds an optimal 
discretization of the spatial slip function using fuzzy approximation theory.

From the viewpoint of approximation theory, additive fuzzy systems can be used as uniform approximators 
of any continuous function to any degree of accuracy (Buckley, 1992; Kosko, 1994; Wang, 1992; Wang & 
Mendel, 1992). Adaptive fuzzy systems approximate continuous functions globally by using overlapping 
patches and locally by tuning the fuzzy patches using a neural system (Kosko, 1994). Among existing fuzzy 
systems, Jang (1991) implemented the Takagi-Sugeno fuzzy system (Takagi & Sugeno, 1983) in the context 
of neural networks, which resulted in the Adaptive Network-based Fuzzy Inference System (ANFIS). Here, 
we use ANFIS to approximate the spatial component of the earthquake source function.

In linear approximation theory, a general function can be approximated by a summation of unknown scalar 
parameters multiplied by known basis functions. For example, in Fourier series approximation, any peri-
odic function can be approximated by a summation of unknown scalar coefficients multiplied by known 
sinusoids. ANFIS is a type of nonlinear function approximator where only the functional form of the basis 
functions are known a priori. The final form of the basis functions, in addition to the approximation co-
efficients, are obtained in a process of learning. Learning in adaptive network theory is simply solving an 
optimization problem to find the unknowns.

In this article, we use the approximation power of ANFIS to discretize the spatial component of the rep-
resentation theorem of seismology. Using this new discretization scheme, we propose a new inversion 
methodology that describes slip on the fault in terms of only a few C -continuous basis functions which are 
found by fuzzy approximation. The inversion is carried out in the frequency domain, such that a spatial slip 
distribution is found independently for each frequency. For each frequency, the spatial slip distribution is 
obtained through a hybrid inversion scheme, which iteratively solves for the basis functions (nonlinear in-
version) and their amplitudes (linear inversion). The parameters of the basis functions are found using gra-
dient descent, whereas their amplitudes are found through linear least squares inversion (Jang, 1993). The 

KHEIRDAST ET AL.

10.1029/2020JB020770

3 of 29



Journal of Geophysical Research: Solid Earth

inversion is regularized using spatial smoothing by Tikhonov regularization. The optimal degree of spatial 
smoothing is resolved by smoothness versus misfit L-curves (Hansen, 2005), which display sharp corners.

The performance of the method is assessed using the SIV1 benchmark exercise (http://equake-rc.info/
sivdb/wiki/Downloads) (Mai et al., 2016). This benchmark has been solved before using a wide range of 
finite-fault inversion algorithms. In order to rank the success of different finite-fault algorithms and their 
solutions, Razafindrakoto et al. (2015) developed the multidimensional scaling method. The multidimen-
sional scaling analysis of SIV1 solutions showed that the results of Fan et al. (2014) and Gallovič and Zah-
radník (2011) obtained the best results. Fan et al. (2014) used a frequency-domain formulation and solved 
the inversion using a Bayesian approach. Regularization constraints included penalizing nonsmooth spatial 
slip distributions, damping small singular values, and fixing slip at fault boundaries. Gallovič and Zahrad-
ník  (2011) used a time domain formulation with a large space-time model space, which later upgraded 
(Gallovič et al., 2015). Their regularization constraints included a target seismic moment and truncation 
of low singular values. We present our solution of the SIV1 benchmark exercise, using different number of 
fuzzy basis functions and discuss their effect on regularization.

In a companion article (Kheirdast et al., 2020), we apply the neuro-fuzzy method presented here to real 
data, in particular to the well-studied Mw 6.2, 24/August/2016, Amatrice earthquake. Therein, we invert 
two different ground motion data sets, including GNSS ground displacements and strong-motion records. 
The low-frequency components of slip (  0.06f  Hz) are inferred from static and high-rate GNSS data, 
whereas higher frequencies (  0.06f   Hz) are inferred from accelerograms. The companion article dis-
cusses the many challenges of modeling real data, including how to set a proper regularization parameter 
and how to select an appropriate spatial discretization. The accuracy of the inferred kinematic model in 
the frequency range of the accelerograms (  0.06 0.5f   Hz) is assessed by comparing synthetics with 
high-rate GNSS data excluded from the inversion dataset. The good match between synthetic waveforms 
inferred from the kinematic model and the observed, noninverted, high-rate GNSS displacements confirms 
the reliability of the method.

2.  Method
In this section, we present a new method to compute kinematic finite-fault models based on an Adaptive 
Neuro-Fuzzy Inference System (ANFIS). We start by presenting the forward relationship, which consists 
of the representation theorem of seismology (Section 2.1). The frequency-domain formulation of the rep-
resentation theorem allows us to solve independently for the spatial slip distribution at each frequency. 
Thus, the time domain 3D spatio-temporal inverse problem is reduced to several smaller independent 2D 
inversions in the frequency domain. We then introduce the adaptive fuzzy approximation that is used to 
find both the optimal basis functions and their amplitudes, which together describe the spatial distribution 
of slip at each frequency (Section 2.2). This optimized spatial discretization allows to lower the number 
of model parameters. In Section 2.2.1, we introduce the mathematical principles of fuzzy approximation 
and show how parameters (i.e., the basis functions and their amplitudes) can be found using an ANFIS. 
Section 2.2.2 shows how the fuzzy source description can be combined with Green's functions in order to 
obtain synthetic waveforms. Finally, Section 2.2.3 shows how an appropriate finite-fault kinematic model 
can be found by optimizing data fit and simultaneously applying a smoothness regularization constraint. 
Text S1 describes in detail how ANFIS is used to describe the 2D spatial slip distributions. Text S2 describes 
how to train the model parameters of the ANFIS, that is, how to optimize the basis functions of the spatial 
slip distribution and their amplitudes. Text S3 explains the Gaussian integration method that we use to 
generate synthetic ground motion from the integration of slip on the fault plane.

2.1.  Representation Theorem: From Fault Slip to Ground Motion

The representation theorem of seismology describes the surface displacement, ou , that is generated by an 
earthquake source fu , assuming that the response of the Earth is that of a linear elastic solid (Aki & Rich-
ards, 2002). The representation theorem can be written in the time domain using a convolutional integral, 
which integrates slip throughout the fault and convolves it with Green's functions:
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

 


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 x xξ ξ� (1)

where, ( , )o
nu tx ,  1,2,3n , is the n’th component of the displacement vector on the Earth surface at location 

x and time t. The seismic source displacement is described as slip, ( , )f
iu ξ , occurring in point ξ  and time   

over a fault plane . ijpqc  is the elasticity tensor and  j is the j’th component of the vector normal to the fault 
plane. ( , ; ,0)npG tx ξ  is the Green's function that represents the displacement at point x and time t  on 
the Earth surface due to a point force applied at time 0 and location ξ  within the solid Earth.

The time-domain convolution of slip on the fault with Green's functions becomes a simple multiplication 
in the frequency domain:

( , ) ( , ) ( , ; )
( )

o f
n i ijpq j np

q
u u c G d   




 

x xξ ξ� (2)

Note that the source function can be described in space and time, ( , )f
iu ξ , or equivalently in space and 

frequency, ( , )f
iu ξ , where  denotes the angular frequency. In the present application, the source function 

is inferred from seismic data, which can also be provided as waveforms in the time domain, ( , )o
nu tx , or as 

spectra in the frequency domain, ( , )o
nu x . Identically, the Green's functions, which contain the response 

of the Earth to applied seismic moments, can be computed in time, , ( , ; ,0)np qG tx ξ , or in frequency, 
, ( , ; )np qG x ξ . In Equations 1 and 2, displacements can be replaced by velocities without loss of generality by 

using the adequate replacements. For example, the source velocity function (SVF), or slip-rate (Figure S4), 
which we aim to find, is simply given by  ( , )f

iu ξ  in the time domain or equivalently by  ( , )f
ii u ξ  in the 

frequency domain.

Let us consider that the fault is approximately a planar surface. Then, the source function becomes a func-
tion of three independent variables,   ( , , )f

iu , or   ( , , )f
iu , where   is the spatial coordinate along the 

strike of the fault and  is the spatial coordinate up the dip of the fault, that is,    ( , )ξ . Using the 
frequency-domain formulation of the representation theorem (Equation 2), the problem can be solved in-
dependently for each frequency point  j (Figure S5). At each frequency,  j, the problem reduces to finding 
a vector function of two spatial variables   ( , , )f

i ju , that fits the observed spectra, at that frequency, at the 
various recording stations and spatial directions. Whereas the convolutional integral of the representation 
theorem in the time-domain (Equation 1) results in one large 3-dimensional inverse problem, in the fre-
quency-domain (Equation 2) we instead solve several smaller 2-dimensional inverse problems.

2.2.  The Neuro-Fuzzy Inversion Method

2.2.1.  Principles of Fuzzy Function Approximation

Approximation theory studies the process of approximating a general function by means of basis functions, 
such as polynomials, exponentials or trignometrics. Fourier series, Taylor expansion or the Finite Element 
method are all examples of approximating general functions using basis functions (Cohen, 2003). In gener-
al, the approximation of a general function ( )f  can be written as:

     
1( ) ( ) ( )n

i i if f A� (3)

where ( )f  is the approximated function,  ( )i  are the basis functions and iA  are the approximation coeffi-
cients. The approximation error is given by the cost function:

Cost f f
p

  � (4)

In Equation 4, 
p

 represents the p'th norm, typically  2p , corresponding to the Euclidean (L2) norm. If 

the basis functions,  ( )i , are independent from the function to approximate, ( )f , then the approximation 
is linear. Fourier series decomposition is an example of a linear approximation. No matter the function 
to approximate, the basis functions are always the same sinusoids. In nonlinear, or adaptive approxima-
tion, the basis functions depend on the function to approximate. Nonlinear approximations are superior 
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because the basis functions adapt to the function to approximate, thereby improving the approximation. 
Fuzzy function approximation is a special case of adaptive approximation. Other adaptive methods have 
been used successfully in Geophysics, namely the Reversible-jump method (Bodin & Sambridge,  2009; 
Green, 1995; Sen & Biswas, 2017), which has been introduced in seismic tomography.

Figure 1 schematically depicts the idea of fuzzy function approximation. Figure 1a shows a general target 
function that we wish to approximate (solid black line). The approximated function (dotted purple line) is 
obtained by adding scaled basis functions,  ( )i iA  (dashed colored lines). In this case, the basis functions  
( ( )i ) are partially overlapping fuzzy clusters (dashed lines in Figure 1b). The basis functions (fuzzy clus-
ters) are themselves composed from fuzzy patches, named membership functions (MFs), which cover the 
input domain (full lines in Figure 1b), such that:

 





  



1

1

( )( ) ( )
( )

n i
i in

j j

MFf f A
MF� (5)

MFs have values between zero and one, which represent the partial degree of belonging of a given input 
point ( ) to a membership function. Thus, a point of the input domain may belong to all basis functions with 
different degrees of membership. In the example presented here, the four initial membership functions are 
regularly spaced (Figure 1c), but they evolve, or adapt, to best approximate the target function (Figure 1b). 
The target function ( )f  is finally approximated as a weighted summation of basis functions (Figure 1a).
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Figure 1.  Example of a fuzzy function approximation. (a) The black line shows a general function that we wish to 
approximate. The fuzzy approximation (dotted line) is composed by scaled fuzzy basis functions (dashed lines). (b) 
Each fuzzy basis function (i, dashed lines) is built from Gaussian membership functions ( )MFs  (solid lines), which 
cover the domain of the independent variable,  . (c) MFs at the first step of the learning procedure.
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The implementation of fuzzy function approximation uses fuzzy inference systems (FIS), which find the op-
timal membership functions, which in turn form clusters (basis functions) (Figure 1b) based on principles 
of fuzzy logic. In our work, we use the constant-output Takagi-Sugeno FIS (Takagi & Sugeno, 1983), where 

 


 
 1

( ) i
i i n

j j

MFW
MF

 are the approximation basis functions and iA  are the approximation coefficients. 

Systems that rely on this fuzzy function approximation are named additive fuzzy systems (Buckley, 1992; 
Kosko, 1994; Wang, 1992). Wang and Mendel (1992) proved that additive fuzzy systems are uniform approx-
imators of any real continuous function to any degree of accuracy.

It is possible to expand Equation 5 using various types of membership functions (e.g., triangular, trapezoi-
dal, Bell function, etc). In our work, we used Gaussian membership functions, MF gmf , to approximate 
slip because they are smooth (infinitely derivable) and their shapes are fully determined by only two param-
eters, standard deviation,  , and center value, :

   


  
   

 

2

2
( )( , , ) exp

2
i

i i i
i

gmf� (6)

The formulation described above can be extended to functions of any number of independent input varia-
bles. For a two-variable function, Equation 5 becomes:

    
 



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


1

1

( , )( , ) ( , )
( , )

n i
i in

j j

MFf f A
MF� (7)

where the membership functions are now two-dimensional functions,  ( , )MF , which can be obtained 
from the one-dimensional ones by simple multiplication:     ( , ) ( ) ( )MF MF MF .

The approximation problem now consists of finding the membership functions, iMF, that compose the 
basis functions, and the respective approximation coefficients, iA , such that the approximation error, Cost,  
is minimized. In general, this will be a nonlinear optimization problem. Jang (1991) introduced Adaptive 
Neuro Fuzzy Inference Systems (ANFIS) by blending the concepts of FIS and neural networks to solve this 
optimization problem. Several global optimization techniques have been used to solve this problem, such 
as genetic algorithms (GA-ANFIS) or particle swarm methods (PSO-ANFIS) (e.g., Rezakazemi et al., 2017). 
Jang (1993) proposed the hybrid learning method, which iteratively uses gradient descent to find the non-
linear parameters and least squares to find the linear parameters of the approximation. Text S1 describes in 
detail how ANFIS is used in our inversion to approximate the 2D spatial slip distribution at each frequency.

2.2.2.  Representation Theorem Expanded Over a FIS Basis

Slip on a fault plane can be mapped to ground motion using the representation theorem. Considering that 
the slip vector can be decomposed into along-strike,   ( , , )su , and updip,   ( , , )du , components, slip on 
the fault plane can then be represented as:

  
  

  
 

       

( , , )
( , , )

( , , )
sf

s d
d

u
u

u v v� (8)

where sv  and dv  are the unit vectors along-strike and updip on the fault surface, respectively. For the sake 
of simplicity, we will only consider here the strike-slip component of slip:      ( , , ) ( , , )f

s suu v . In the 
remaining of the manuscript, we omit the subscript s from   ( , , )su  for easiness of reading. The general-
ization of this formulation to both along-strike and updip components is straightforward and one such 
example can be found in the companion article (Kheirdast et al., 2020).

For each frequency,  j, we can approximate the continuous 2D spatial slip distribution using a fuzzy for-
mulation (FIS):

 

     
 

      
 

    , , , ,
1 1

( , , ) ( , ) ( , )
N N

j i i i ij ji i
u W A� (9)
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where     , , ( , )i i jW  are the adaptive basis functions, composed from 2D Gaussian membership functions, 
and   , ,i i jA  are the approximation coefficients, both to be found from data. Note that the amplitudes, 

  , ,i i jA , are complex-value variables. Because in general,   , ,i i jA  are complex numbers, the fuzzy system 
represents both the phase and amplitude information of the ground motion (Equation 9). Considering the 
representation theorem (Equation 2), we can then write the observed displacement at the surface as:

 

     
 

       


 
      , , , ,

1 1
( , ) ( , ) ( ; , , ) ( , )

N N
o
n j i i n j i ij ji i

u W G A dx x� (10)

where  is the fault plane and:


 


n si ijpq j np

q

G v c G� (11)

Equation 10 describes ground motion as a function of slip on the fault, which in turn is described as a com-
bination of a few adaptive basis functions,     , , ( , )i i jW  and their amplitudes,   , ,i i jA . In Equation 11, siv  
denotes the i’th component of the along-strike unit vector sv .

We use the efficient Gauss quadrature method to compute the spatial integral of slip on the fault (Equa-
tion 10). The method is described in detail in Text S3. We start by dividing the fault plane  into square 
subfaults i (Figure 2a). We then replace the physical coordinates along-strike and updip ( , ) by natu-
ral integration coordinates ( , ) (Figure 2f), which facilitate Gaussian quadrature. The forward equation 
(Equation 10) on each integration element i then becomes (Equation 12):

 

 









 
i i i j n j i i j

i

W G A d

W

     



    , , , ,( , ) ( ; , , )x

 1
1

1
1

  

  

        


, ,

, ,

( ( , ), ( , )) ( ; ( , ), ( , ), )

(

i j n j

i i j

G

A J

   
x

,, ; , )

( ( , ), ( , )), ,

  

     

 

 

d d

W G
ig

M

jg

N

i i j ig ig jg jg  
 1 1

nn ig ig jg jg j

ig jg ig ig i iw w J A





( ; ( , ), ( , ), )

( , ; , ) ,

x     

    

 

 ,, j

� (12)

By definition, the total area of each integration element in natural coordinates equals 4, a consequence of 
how integration elements are defined. Therefore, if the area of integration elements in physical coordinates 
is S, then the natural to physical coordinates transformation kernel   ( , ; , )i jJ   equals / 4S .

Note that in order to evaluate Equation 10, we must calculate the Green's functions at every Gaussian inte-
gration point. Let us consider the same number of Gaussian points along-strike and updip for each integra-
tion element, such that   gM N N . Then, Equation 10 at an observation point isx  gives:

 

  
 

  

    

    

   
    


   

      , , , , , ,
1 1 1 1

, , , , , ,

( , ) ( ( , ), ( , ))

( ; ( , ), ( , ), )
4

N N N Ng g
o

n is j i i ig ig jg jgj i i i ii i ig jgi

n is ig ig jg jg j ig jg i ii i i i j

u W

SG w w A

x

x

 

 

� (13)

where ,ig i  is the ig-th Gaussian point along-strike and  ,jg i  is the jg-th Gaussian point updip, in both cases 
within subfault i.

Equation 13 is now a set of linear equations in which ( , )o
n is ju x  is the synthetic data vector containing obser-

vations at frequency  j and station isx . The number of elements within the synthetic data vector ( , )o
n is ju x  

is  3sN , where sN  is the number of stations. On the right-hand side,   , ,i i jA  are the amplitudes of the 2D 

adaptive basis functions,   , ,i i jW . We can simplify the equation above by re-arranging it into matrix form. To 
this end, we order sequentially the 2D slip amplitudes,   , ,i i jA , in ibasisA  and the observations at each station 

and ground motion component, ( , )o
n is ju x , in irecd . We use the following indexing scheme:

    ( 1)ibasis i N i�

   ( 1) 3irec is n�
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In which, each set  ( , )i i  corresponds to a unique ( )ibasis  and each set ( , )is n  corresponds to a unique obser-
vation record ( )irec . The forward equation that relates the amplitude vector ( ibasisA ) with the station-compo-
nent record of ground motion ( irecd ) at frequency  j is mediated both by the Green's functions and by the 
adaptive fuzzy basis functions, which we represent as  ,( )irec ibasisjGW :

       

    

   
  


   

   , , , , , , ,
1 1

, , , ,

( ) ( ( , ), ( , ))

( ; ( , ), ( , ), )
4

N Ng g

irec ibasis i i ig jg ig jgj j i i i iig jgi

n is ig jg ig jg j ig jgi i i i

GW W

SG w wx

 

 

� (14)

The 2D inverse problem that we need to solve for each frequency,  j, is then:
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Figure 2.  (a) Integration subfaults (blue points), each of which contains four Gaussian integration points (blue square in (f)), where the Green's functions are 
computed and used to integrate slip over the fault plane. (b) Set of regularization points, spaced 1 km  1 km apart, used to evaluate Equation 18. (c, d) Initial 
1D Gaussian fuzzy membership functions for the input variable   (c) and  (d). This example shows the fault discretized using 6 membership functions both 
along-strike and dip. (e) Initial 2D base function   3, 3i iW , which results from the combination of the third membership function along strike with the third 
membership function in the dip direction. This is one of the  6 6 36 initial basis functions used to discretize the spatial slip distribution for each frequency. 
(f) Integration element with four Gaussian points.
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  j j jd GW A� (15)

This equation describes the relationship between data and the parameters of the ANFIS. Data, d, is a known. 
We need to find both the basis functions, ,ibasis jW , from which we can compute the forward relationship, 

 jGW , and we also need to find their amplitudes,  jA .

Equation 15 allows to optimize the unknown parameters, ,ibasis jW  and  jA , by fitting synthetics to data. 
This optimization problem is solved using the hybrid scheme described in the next section. Once the ANFIS 
is trained, the optimal approximation parameters have been found. The combined approximation parame-
ters yield the kinematic slip distribution.

2.2.3.  Inversion and Regularization

The optimal ANFIS approximation parameters can be found by hybrid learning (Jang, 1993). This optimi-
zation method iterates between a linear least squares inversion to find  jA  and a gradient descent to find 

the nonlinear parameters of the basis functions,   , ,i i jW . At the linear step of the hybrid scheme,  jA  is 
obtained from the inversion of Equation 15 by minimizing the L2-norm difference between data (  jd ) and 
the forward prediction (  j jGW A ):

GW A d  j j j


2
� (16)

The optimal set of amplitudes (  jA ) can then be found simply as:

    
 1( )T T

j j j j jA GW GW GW d� (17)

Because of ill posedness, the solution to Equation 17 can become unstable, that is, low noise levels may 
change substantially the amplitudes  jA . In order to stabilize the inversion, we apply a smoothness con-
straint. This regularization aims to find the slip distribution with the least complexity that can fit the data 
well.

For sake of stability, it is advantageous to use a set of regularization points that is generally noncollocated 
with the set of integration points (later discussed in Section 5.5). Equation 9 can be evaluated over a set of 

regN  regularization points,  ( , )ireg ireg , by applying     ( 1)ibase i N i

 

    
 

   


 
  , , ,

1, 1
( , ) ( , ) ,

N N

ireg ireg i i ireg ireg ibasej j ji i
u W A� (18)

 which can be written in matrix form as: 

   ,regj j ju W A� (19)

We aim to find a regularized solution consisting of the smoothest (least complex) slip distribution that can 
fit the data well. Thus, we require that two optimization conditions be satisfied: (a) a good fit between data 
and synthetics, with an allowed error   and (b) minimization of the slip Laplacian:

GW A d

LW A

  

 


j j j

reg j j

 
2

2

min ,
� (20)

where L is the matrix representation of Laplacian operator (2), here computed over the two-dimensional 
fault plane. L works as a roughening matrix, giving preference to smoother slip distributions. The solution 
that simultaneously satisfies the two optimization conditions of Equation 20 can be found by Tikhonov 
regularization, where the regularization parameter   is introduced (Equation 21):

min
,

GW

LW

A

d







j

reg j

j

j























0

2

2

� (21)
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The solution to Equation 21 can be found by least squares inversion (Equation 22):

       2
, ,( ( ) )T T T

reg regj j j j j j jGW GW LW LW A GW d� (22)

The regularization parameter   can be physically interpreted as a smoothness-controlling parameter. The op-
timal smoothness level is found by L-curve diagrams (Hansen, 2005), which measure the trade-off between 
model smoothness and data fit. The optimal trade-off is the point where the L-curve shows a maximum 
curvature. This point corresponds to the smoothest model that can fit the data well. Note that in situations 
where the amplitude of data noise is known, the discrepancy principle can be applied to compute directly 
  (Aster et al., 2018). Other mathematical principles such as the discrete Picard condition (Hansen, 2005) 
can also be used to determine  . Note also that the optimal level of smoothness is frequency-dependent.

The cost function to be minimized by the hybrid inversion scheme is then:

CostFIM j j j

t data

reg j j

t

  GW A d LW A    
2

2

2

2

2

Cos

,

Cos

  
ssmooth

  � (23)

FIMCost  in Equation 23 is the cost function to be minimized in the neuro-fuzzy inversion. The hybrid opti-
mization iterates between two steps. At step one, the linear parameters,  jA , are found from equation Equa-
tion 22. At step two, the linear parameters are kept constant and the derivatives of FIMCost  (Equation 23) 
with respect to the nonlinear parameters,   , ,i i jW  (Equations  14 and 18), are computed. The nonlinear 
parameters are then corrected considering the derivatives using the method of gradient descent. These two 
steps of hybrid learning are applied iteratively until FIMCost  arrives at a stationary point. Text S2 explains in 
the detail the optimization procedure implemented by hybrid learning.

3.  Synthetic Test
3.1.  The SIV-inv1 Benchmark Exercise

The Source Inversion Validation (SIV) project (http://equake-rc.info/SIV/) provides several benchmark 
exercises to test the performance of finite-fault kinematic inversion algorithms (Mai et al., 2016). The ex-
ercises consist of slip distributions and their resulting synthetic ground motion. Users are invited to invert 
the synthetic ground motion using their codes. The quality of the resulting slip distributions can then be 
assessed by comparison with the original ones. We test the performance of our method using synthetic data 
from the benchmark exercise one of SIV (SIV-inv1).

SIV-inv1 corresponds to a strike-slip earthquake on a 80  dipping fault. The slip distribution was obtained 
from a crack-like spontaneous dynamic rupture model and is thus physically self-consistent. The fault plane 
is 36-km long and 18-km wide. The seismic moment of the earthquake is   19

0 1.06 10 N mM , corre-
sponding to a  6.6wM  earthquake. Noise-free synthetic seismograms are available at 40 near-fault stations 
(Figure S6a). The sampling rate of the synthetic records is 25 Hz and the maximum frequency content of 
the records is  2.5maxf  Hz.

The origin of the coordinate system is placed in the middle of the fault trace, at the surface. The hypo-
center is located at 9.10 km E, 1.5802 km N, and at a depth of 13.9618 km. The material properties are 
considered to be known and made available to modelers. The velocity structure is 1D and depth dependent 
(Figure S6b). Velocity layers are homogeneous and isotropic. Attenuation is zero everywhere in the medium 
(   p sQ Q ).

3.2.  Inversion Setup

We computed Green's functions using AXITRA (Coutant,  1989). AXITRA implements a discrete 
wave-number method to forward compute seismograms corresponding to wave propagation through 
a layered structure (Coutant,  1989). Considering the distance between stations and fault plane, we 
computed Green's functions with a duration  32T   s and a sampling frequency of 4  sps. The max-
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imum frequency that is well represented in our Green's functions is then the Nyquist frequency 
 / 2 2Nyq sampf f  Hz. We therefore have  2 128 / 2 64n  unique spectral points, ranging from 0 to 
 2Nyqf  Hz, with a spectral sampling of   / 2 1 / 32Nyqf f n  Hz. Note that both the real and imag-

inary parts of the spectra must be fit in order to retain the amplitude and phase information of the 
seismic wavefield.

We adopted the SIV-inv1 coordinate system. Accordingly, the fault plane ranges    18 km 18 km along 
strike and  2.014 km 20.014 km down dip. As explained in Section 2.2.2, we integrated slip on the fault 
using Gaussian integration. Each integration subfault has dimensions of 2 km  2 km, each of which con-
taining four Gaussian integration points (Figure 2f). We computed Green's functions for every Gaussian 
integration point (Figures 2a and 2f). These are the quadrature points used to evaluate Equation 14. The 
points used for regularization are defined on the same fault plane but distributed over a regular mesh of 
1 km  1 km, which is used to evaluate Equation 18 (Figure 2b).

As explained in Section 2.2.2, for each frequency, the spatial slip distribution is expanded using 2D adaptive 
fuzzy basis functions. These 2D fuzzy basis functions are obtained from the combination of 1D Gaussian 
membership functions distributed along-strike and updip. Here, we present results using six fuzzy member-
ship functions for each direction,    6N N . In Section 5.2, we discuss the impact of choosing a different 
number of membership functions, hence basis functions, to discretize the fault plane.

The initial fault plane discretization is identical for all frequencies and is obtained using the grid par-
titioning method (Text S1). Figures 2c and 2d show the initial 1D membership functions for   (along-
strike) and  (updip). Figure  2e shows the initial 2D base function   3, 3i iW , which in this example 
results from the combination of the third membership function along-strike with the third membership 
function in the dip direction. For the case shown in Figure 2c, and considering that each membership 
function is described by two parameters  ( , ), we need a total of 24 parameters to describe the basis 
functions, 12 along-strike and another 12 down-dip. In addition, we require another 36 ( 6 6) fuzzy am-
plitude parameters. Thus, the total number of parameters used to describe the spatial slip distribution 
adds up to 60.

3.3.  Inversion

Our inversion finds the solution to the normal Equation 22, presented in Section 2.2.3, for all frequency 
points. At the current stage of development, this search is performed independently for each frequency. 
Before starting the inversion, we find the optimal smoothness parameter ( ) for each frequency, consid-
ering the initial fuzzy membership functions. For this purpose, we compute L-curves for the different 
frequencies (Figure  3). L-curves show very sharp corners at relatively low frequencies (in this exam-
ple, at 11 / 32 0.3f   Hz), indicating a good ability to resolve the optimal trade-off between smooth-
ness and misfit, that is, to find the smoothest model that can fit the data well. However, the sharpness 
of the L-curve corners decreases with increasing frequency, indicating that the optimal trade-off be-
tween smoothness and data fit cannot be adequately resolved at higher frequencies (in this example, at 

11 / 32 0.3f   Hz).

Once   is set, the ANFIS parameters (i.e., the adaptive basis functions and their coefficients) are obtained 
from the data using the regularized hybrid learning methodology (Section 2.2.3 and Text S2). Note that   is 
set at the beginning of the learning procedure, before initiating the iterative hybrid optimization, and not 
updated throughout learning. If we updated   at each learning epoch, we would learn the network with dif-
ferent cost functions at different epochs. This would correspond to solving different minimization problems 
at different epochs, which would destabilize the inversion. We will discuss the implications of assuming a 
constant   in Section 5.4.

The inversion stops when the cost function arrives at a stationary point, indicating that the parameters that 
approximate the slip distribution have converged (Figure 4). Figure 5 compares the 2D fuzzy basis functions 
for the spatial slip distribution at zero frequency (static slip distribution), 0

32

W , at the begging and at the end 
of learning.
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4.  Results
Figure 6 compares the spatial distributions of slip rate made available by SIV1 and inferred from the neu-
ro-fuzzy method, at selected frequencies. Note that the  0f  Hz model corresponds to the permanent static 
displacement on the fault, that is, to the final cumulative displacement. A similar comparison for the com-
plete range of frequency points, from 0 to 0.72 Hz, is provided in the supplementary material (Figure S8).

A visual analysis of the true (right) versus inferred (left) slip rate functions shows that the match between 
the two is good at low frequencies and gradually decreases with increasing frequency. However, at all fre-
quencies, the inversion is able to find the spot on the fault that radiates most energy. These results suggests 
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Figure 3.  L-curves showing data misfit ( GF A d  j j j
 2) versus slip roughness ( LW A j j 2) for selected frequency points ( j) ranging from 0 to 


23 0.72
32

Hz. We used a total of 36 basis functions to describe the spatial slip distribution at every frequency (   6N ,   6N ). The L-curve corners at low 

frequencies are much clearer than at high frequencies, suggesting that the data can resolve adequately the optimal smoothness level at low frequencies but not 
at high frequencies. Red circles show the points of maximum curvature. This figure for the full range of solution frequencies is provided in the supplemental 
material (Figure S7).
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that, while the neuro-fuzzy methodology is adequate at low frequencies, there is still room for improvement 
at high frequencies. This topic will be further addressed in Section 5.2.

The time-domain slip rate function,  ( , , )SVF t , can be straightforwardly reconstructed from the frequen-
cy-domain solutions,   ( , , )SVF , using a simple inverse Fast Fourier transform. We can then inspect the 
match between the inverted (Figure 7a) and true time-domain slip rate functions (Figure 7b) at chosen 

points on the fault (Figure 7a). Because the maximum frequency used in our inversion was 
23 0.72
32

 Hz, 

we compare SVFs only below this frequency (Figure 7c, blue line). Figure 7c shows that the fit between in-
verted (green line) and true SVFs is qualitatively good. Note that the modeled SVFs show negative velocities 
corresponding to backslip, which are not physically plausible. The backslip is a numerical artifact due to a 
terminated summation of time-harmonic functions, which is unavoidable in a frequency-domain inversion 
(e.g., Fan et al., 2014). However, the backslip is limited by the stability of the inversion. Further discussion 
on backslip in a real earthquake application can be found in the companion article (Kheirdast et al., 2020).
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Figure 4.  Evolution of the cost function over 200 learning epochs, for selected frequencies 
0 0

32
 Hz, 

7 0.22
32

 Hz, 


14 0.44
32

 Hz, and 
23 0.72
32

 Hz using a total of 36 basis functions (   6N ,   6N ). Note that the convergence to the 

final solution is faster at low frequencies and slower at high frequencies.

Figure 5.  2D fuzzy basis functions, 
 ,i iW , for  0f  Hz. (a) At the beginning of the learning procedure. (b) At the end of the learning procedure.
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Figure 8 shows the fit between the original SIV-inv1 waveforms and those generated by our slip model. Again, 
because the maximum frequency used in our inversion was 

23 0.72
32

 Hz, we compare the waveforms only 
below this frequency. The comparison shows that the main waveform features are very well resolved. How-
ever, some of the synthetic waveforms generated by our model have spurious high-frequency ripples.

5.  Discussion
Let us now discuss the advantages, limitations and potential improvements of the fuzzy inversion method. 
The main advantage of the fuzzy inversion method is that it allows to lower the number of spatial basis 
functions at each frequency, thus strongly reducing the model null-space and stabilizing the inversion. 
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Figure 6.  Comparison between the spatial distribution of inverted (a, left) and true (b, right) source velocity functions (SVFs), that is, slip rate, at selected 

frequency points: (1) 
0 0

32
 Hz, (2) 

7 0.22
32

 Hz, (3) 
14 0.44
32

 Hz, and (4) 
23 0.72
32

 Hz. The slip rate is well retrieved at low frequencies, but becomes less 

accurate at high frequencies. For all frequencies, we used the same number of membership functions along-strike and updip,    6N N , adding up to a total 
of 36 basis functions. A similar figure but showing the full range of solution frequencies is provided in the supplemental material (Figure S8).
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Because the ANFIS approximation uses both linear and nonlinear parameters, a full assessment of model 
uncertainty will have to evaluate the uncertainty at both the linear and nonlinear steps of the hybrid inver-
sion. Advanced tools in modern statistics and machine learning that allows to reliably determine the quality 
of solutions include resampling methods (James et al., 2013). These methods involve repeatedly drawing 
subset to obtain additional information about the model and its uncertainty, such as the variability of the 
residual norm or model parameters. Two of the most common resampling methods are cross-validation and 
bootstrap. Cross-validation, and associated variants, like Leave-One-Out Cross-validation (LOOCV) and 
k-Fold Cross-validation, can be used to estimate the test error associated with a given learning method or to 
select a specific model among possible choices. In the companion article (Kheirdast et al., 2020), we show a 
basic cross-validation analysis in a real earthquake application by dividing the data available into two sets: 
training and validation sets.

Bootstrap is another statistical analysis tool that is widely used to quantify the uncertainty associated with 
a given estimator or learning method (James et al., 2013). In bootstrap, we randomly select an observation 
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Figure 7.  (a) Location of eight representative cells on the fault plane, for which we compare the true and modeled time-domain slip rate functions. The 
inverted static slip distribution (  0f  Hz) is plotted in the background. Inverted slip rates are plotted inside each cell. (b) Same as (a) but for the true SIV-1 slip 
distribution. (c) Enlarged representation of chosen cells in (a, b), showing the comparison of time-domain slip rate functions (SVFs). The background color 

shows the true static slip (b). The maximum frequency used in our inversion is 
23 0.72
32

 Hz, therefore we show the original SIV-inv1 SVF (dashed black line), 
low-pass filtered at 0.72 Hz (blue line), and the inverted SVF (green), which naturally only contains frequencies 0.72 Hz.

Figure 8.  Comparison between Source Inversion Validation (SIV)-inv1 data (blue) and waveforms generated by our modeled slip distribution (red), at 

 
23 0.72
32

f  Hz. All main waveform features are well resolved, however some synthetic waveforms generated by our model have spurious high-frequency 
ripples.
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from the data set to produce a bootstrap data set. Several data sets are then used to infer several slip mod-
els, from which the uncertainty of the inferred model is determined. Further, in recent advances in fuzzy 
function approximation methods, Kosko (2018) introduced a generalized mix of additive fuzzy systems and 
its corresponding mixed probability density. Based on it, one can decide which rule basis system is most 
adequate for approximating a target data. Using a Monte Carlo sampling, one can find the most adequate 
system, as well as its uncertainty.

Although a full implementation of these advanced methods of uncertainty estimation is out of the scope 
of this article, we can still gain insight on the stability of our model by applying generalized singular value 
decomposition (GSVD) principles (Text S4) at the linear step of our inversion. Therefore, we use GSVD to 
investigate the effectiveness of the neuro-fuzzy inversion method in mitigating ill posedness throughout the 
consecutive linear steps of learning epochs. In particular, we investigate how ill posedness depends on the 
number of membership functions. We also show how the evolutionary nature of the neuro-fuzzy inversion 
allows to explore both model space and data space while searching for an optimal model.

We discuss how the regularization parameter   evolves throughout optimization and show that assuming a 
constant   is a valid premise. We discuss the impact of meshing on the numerical stability of the method, as 
well as the trade-off between resolution and stability. Finally, we evaluate the performance of our method 
using the multi-dimensional scaling (MDS) introduced by Razafindrakoto et al. (2015).

5.1.  Generalized Singular Value Decomposition (GSVD) Applied to the Neuro-Fuzzy Inversion 
Method

In order to understand how the neuro-fuzzy method mitigates the ill posedness of finite-fault inversions, let 
us apply generalized singular value decomposition GSVD at the linear step of the hybrid learning scheme, 
where regularization is applied (Equation 22). The mathematical principles of GSVD are laid out in Text S4. 
GSVD shows how model space is mapped into data space. Based on GSVD, it is possible to determine 

coefficients 
 




2

2 2
i

i
i

f , commonly called filter factors, which control how much the values :,
T

i jU d  and  

U d
i

T

:, 


j

i

 contribute to dataCost  and smoothCost , respectively, as a function of the singular values i and i 

(Hansen,  1992). The columns of matrix U makes an ortho-normal set of basis vectors and allows us to 
expand the data-space. Filter factors control how data is mapped into the cost functions as a function of 
singular values. Small singular values correspond to combinations of model parameters that have little 
correspondence on data space, therefore, they cannot be found unambiguously by minimization of the cost 
function. As such, small singular values destabilize the inversion and should be filtered out. The parameter 
  represents a cut-off in the filter coefficients that separates the singular values that will be used in the 
inversion from those that will be filtered out. In GSVD, the generalized singular values ( i) are arranged in 
ascending order, therefore if  represents a high-pass filter (Figures 9a and 9e). In the cost of model roughness 
(Equation S28), small generalized singular values ( i) and consequently small filter coefficients ( if ) corre-

spond to a stop-band, damping large values of 



:,
T

j

i

iU d
. Inversely, in the cost of data misfit (Equation S30), 

(1 )if  represents a low-pass filter (Figures 9b and 9f), which damps large values of :,
T

i jU d .

Figure  9 shows the values of GSVD factors, namely the filter factors, the coefficients that contribute to 

dataCost , 1 if , :,
T

i jU d , and the coefficients that contribute to smoothCost , if , 



:,
T

j

i

iU d
, as a function of the 

generalized singular values  i at two sample frequency points: 0 Hz and 
14 0.44
32

 Hz. At 0 Hz, the configu-

ration of 



:, j

i

T
iU d

 (Figure 9c) and :,
T

i jU d  (Figure 9d) is such that we can effectively find a cut-off parameter 

  that separates large values of :,
T

i jU d , that is, singular values that map well data to the cost function, from 

large values of 



:, j

i

T
iU d

, that is, from destabilizing singular values. Consequently, we can effectively separate 
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small from large singular values and filter out the destabilizing small singular values. This clear separation 
between large and small singular values corresponds to an L-curve with a well-defined corner, which in-
dicates a clear optimal trade-off between smoothness and data fit. Note that the smoothness-related cost  
( smoothCost ) corresponds to the shaded area in Figure 9c and the data misfit related cost dataCost  corresponds 
to the shaded area in Figure 9d. In both cases, the darkness of the shaded areas is adjusted by the filter 
factors, if  and 1 if , respectively. On the other hand, at higher frequencies ( 

14 0.44
32

 Hz in this example), 

large and small singular values are not as clearly separated. Therefore, it is more difficult to determine an 
adequate cut-off parameter   at higher frequencies.

KHEIRDAST ET AL.

10.1029/2020JB020770

19 of 29

Figure 9.  Generalized singular value decomposition of the regularized normal equation solved in the inversion 

(Equation 22) for (a–d) 0 Hz and (e–h) 
14 0.44
32

 Hz. (a, e) Filter factors, 


 




2

2 2
i

i
i

f , which correspond to a high-

pass filter that controls the contribution of small singular values to the inversion. The cut-off point  (vertical red 
line) is determined considering the maximum curvature of the L-curve. Circle size corresponds to the value of each 
generalized singular value. (b, f) (1 )if  Low-pass filter that suppresses the effect of large :,

T
iU d in order to optimize data 

fit (Equation S30). (c, g) Values of 

:,
T

i

i

U d
 (see Equation S28) as a function of generalized singular values ( i). Note that 

the large values of 

:,
T

i

i

U d
 are all placed in the stop-band of if , therefore they are effectively filtered out of the inversion. 

Note that smoothCost  corresponds to the shaded area under this curve. (d, h) Values of :,
T

iU d as a function of generalized 
singular values ( i). Large values of :,

T
iU d correspond to the singular values that explain data better. Note that at higher 

frequencies (in this case, at  
14 0.44
32

f  Hz) the data vector has a larger image on :,iU  corresponding to small 

singular values ( i). dataCost  is the squared summation of :,
T

iU d filtered by (1 )if , which corresponds to shaded areas 
in (d, h). All plots correspond to the slip distribution at the start (epoch 1) of the fuzzy inversion. The number of fuzzy 
basis functions is   6N  and   6N , therefore we have 36 nonzero singular values in this problem setting.
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5.2.  Impact of Varying the Number of Membership Functions.

In Section 4, we showed an example of finding the slip function for the SIV-inv1 benchmark exercise using 
6 6 membership functions. In the previous section, we showed that by means of GSVD, we can separate 

the generalized singular values that help constrain the model parameters from those that make the prob-
lem ill posed. The number of model parameters in our inversion scales with the number of membership 
functions used to discretize the spatial slip distribution. If we use less membership functions, the problem 
will have a lower number of model parameters. In this case, the parameters will be easier to resolve. How-
ever, this imposes model simplicity and the membership functions will not be able to adequately describe 
the details of a complex slip distribution. On the other hand, if we use more membership functions, it will 
be more difficult to resolve adequately all model parameters, but they will have a better ability to describe 
complex slip distributions.

Let us examine what happens when we increase the number of membership functions. In particular, given 

that high frequencies are the least well resolved in our model, let us consider  
14 0.44
32

f  Hz. Figure 10 

compares the GSVD parameters, namely the filter factors (


 




2

2 2
i

i
i

f ), 

:,

i

dT
iU

, and :,
T

iU d at  
14 0.44
32

f  Hz, 

in inversions where we used a different number of membership functions:   4, 4N N  (Figure 10a), 
  5, 5N N  (Figure 10b),   6, 6N N  (Figure 10c),   7, 7N N  (Figure 10d), and   8, 8N N  

(Figure 10e). This figure shows that the increase in the number of basis functions increases the number of 
small singular values, therefore, the inversion becomes less well posed and more sensitive to noise pertur-
bations. In general, inversions using less membership functions are less sensitive to noise and reproduce 
only the main model features.

Because the problem that we are solving is ill posed, the use of regularization strategies is inevitable, thus 
we always need to select the trade-off parameter  . Note that in the case of the SIV-1 benchmark, where 
data is noise-free and the true velocity structure and the fault geometry are known,   remains approximate-
ly constant for the different examples shown in (Figure 10). In this example, because the estimation of   is 
reliable and does not depend strongly on number of membership functions, we can increase the number of 
membership functions as needed to image slip on the fault. However, we should bear in mind that in a real 
earthquake application increasing the number of membership functions increases the number of small sin-
gular values. If finding an adequate   is not possible, then using a lower number of membership functions 
will prove advantageous.

We should also note that due to the regularization, even if we increase the number of fuzzy basis functions 
to a very large number, we will still not be able to achieve a perfect solution because of filtering out part of 
the forward model.

Figure 11 presents the final spatial slip distribution, at  
14 0.44
32

f  Hz, corresponding to the five cas-

es described above, obtained with different numbers of basis functions. The retrieved slip functions are 
broadly similar to the true slip function. The inversions with the highest number of membership functions 
(   8, 8N N ) is able to resolve more detail. In general, at low frequencies one can adequately resolve the 
slip function with a lower number of model parameters, whereas at higher frequencies more model param-
eters are required to explain the data.

5.3.  L-Curve Evolution Throughout the Inversion

The learning procedure of the neuro-fuzzy inversion can be seen as an evolutionary method that filters 
out the parts of the basis functions that do not have a proper image on data and therefore destabilize the 
inversion. The method keeps the fuzzy basis that allow a proper data fit and improves them throughout 
consecutive epochs. This procedure continues until a stationary point is reached, where no better data fit 
can be achieved without generation of instabilities. Next, we discuss the evolutionary power of our learn-
ing procedure, which explores both model and data space, by looking at the evolution of L-curves during 
optimization.
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Figure 12a shows the evolution of the L-curve at 0 Hz through consecutive learning epochs, from 0 to 50. 
We can see a continuous improvement of the L-curve, such that the optimal smoothness level is reduced 
at every epoch, while the data misfit does not vary substantially. On the other hand, at higher frequencies  
(  14 / 32 0.44f  Hz), both data misfit and slip roughness are reduced throughout learning (Figure 12b).

The results show that the corners of L-curves become sharper throughout the inversion, indicating that 
as the solution converges the optimal trade-off between data fit and model smoothness becomes better re-
solved. It also shows that the model evolves differently at different frequencies. Whereas at low frequencies 
the model improves mostly by decreasing model roughness, at high frequencies data fit improvement is the 
most relevant feature.

5.4.  How Does the Maximum Curvature Point ( ) Vary Throughout Learning?

We saw in Section 5.1 that the regularizing parameter   defines the trade-off between data misfit and slip 
smoothness. In general, the value of   depends on data error and on the predictive power of the forward 
model. We have already seen that the number of fuzzy basis functions does not impact substantially the 
value of   (Figure 10). Now, we will investigate the variation of   throughout learning.
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Figure 10.  Generalized singular value decomposition (GSVD) analysis for five inversions using different numbers of basis functions. All results concern the 

slip distribution at  
14 0.44
32

f  Hz, at the first learning epoch, using noise-free data. (a)   4, 4N N , (b)   5, 5N N , (c)   6, 6N N ,  

(d)   7, 7N N , (e)   8, 8N N . The increase in the number of basis functions results in an increase of the number of small singular values. The 
regularization  parameter (red vertical line) has approximately the same value in all five cases, effectively filtering out small singular values and mitigating 
their impact. Note that the inversion that uses more basis functions is better able to capture local slip variations (Figure 11).
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In our regularization approach, we use   to select the parts of the mathematical model that contribute 
more to explain our dataset and filter out the remaining parts. This approach is valid if the range of singular 
values in our problem remains similar throughout learning. If this is not the case, then   must be updated 
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Figure 11.  Spatial slip distributions at  
14 0.44
32

f  Hz after 500 learning epochs for the SIV-1 benchmark exercise. Comparison between (a) source velocity 

function (SVF) retrieved using 16 membership functions:   4, 4N N  (b) SVF retrieved using 25 membership functions:   5, 5N N , (c) SVF retrieved 
using 36 membership functions:   6, 6N N , (d) SVF retrieved using 49 membership functions:   7, 7N N , (e) SVF retrieved using 64 membership 
functions:   8, 8N N , and (f) the true SVFs. The inversion that uses more fuzzy basis functions is better able to image the fine-scale structure of the slip 
distribution.

Figure 12.  Evolution of L-curves throughout 50 learning epochs at (a)  0f  Hz, and (b)  
14 0.44
32

f  Hz. Over the 
50 learning epochs, L-curves move to the bottom and left side of the graphic, indicating that throughout learning we 
achieve smoother models and better fits to data, respectively.
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in order to continue to be effective. As explained in Section 3.3,   is set at the beginning of learning and 
not updated throughout the optimization. Updating   would correspond to optimizing different cost func-
tions at different iterations, which can destabilize the inversion. However, as the basis functions adaptively 
evolve, the L-curves also evolve, and so must  . For the sake of this discussion, we display the updated 
values of   using the L-curve maximum curvature criterion at every single epoch for selected frequencies 

0 Hz, 
14 0.44
32

 Hz, and 
23 0.72
32

 Hz (Figures S9, S10, and S11 in the electronic supplements). The results 

show that  , as determined from the maximum curvature of the L-curves, in deed varies throughout the in-
version but not significantly. Therefore, the constant   approach used in our fuzzy inversion is appropriate.

5.5.  Effect of Meshing and Numerical Accuracy in Finding the Damping Parameter 

In Section 5.2, we showed that if we use less membership functions, we can solve the inverse problem with 
less small singular values, consequently limiting the model null-space and solving a less ill-posed inver-
sion. Ill posedness can be reduced not only by using a low number of membership functions but also by 
increasing modeling accuracy. In particular, we can reduce ill posedness simply by increasing the number 
of integration points ( gaussN ) and decreasing the distance between regularization points ( regx ). This strategy 
will increase the forward modeling accuracy and allow a more rigorous regularization. In cases where the 
trade-off parameter ( ) is not detectable from the L-curve, particularly at high-frequencies, this approach 
can help to determine a proper damping level.

Figure 13 shows four different inversion setups with different numbers of Gaussian integration points and 
regularizing points. From case#1 to case#4, we continuously increase the number of Gaussian integra-
tion points (Figure  13a) and the density of regularizing points (Figure  13b). In all cases, we consider a 
similar slip discretization, with   6, 6N N  membership functions. The corresponding L-curves, for 

 
9 0.28

32
f  Hz, are shown in Figure 13c. In case#1, the maximum curvature point is hardly detectable. 

As the modeling accuracy and constraint power are increased, in case#2, the identification of the trade-off 
level becomes more clear. In cases #3 and #4, the maximum curvature points have similar residual norms 
and smoothing level. The L-curve in case#4 is that with a higher curvature, highlighting a better ability to 
correctly identify the damping parameter (). The latter cases, #3 and #4, are preferable because they allow 
for a larger misfit, therefore not overfitting the data as much as cases #1 and #2. By allowing higher misfits 
and avoiding to overfit the data, less data noise is accounted for, which stabilizes the inversion.

5.6.  Resolution

Let us now inspect the resolution of our model. To this end, we compare the model resolution matrix for 
two cases of slip discretization, at 0 Hz: (1) With constant slip parameters at integration nodes, and (2) With 
  6N ,   6N  fuzzy basis functions. In both discretizations, the inversion has 18 integration elements 

along-strike and 9 updip, adding up to a total of 162 model parameters. We considered one Gaussian point 
inside each integration element. The regularizing operator L is similar in the two discretization cases. The 
configuration of integration and regularization points is as same as case#1 in Figure 13.

First, let us we consider a constant slip discretization. In this case, the model resolution matrix is calculated 
from (Equation 24):

       2 1
, ( ) ,T T T

Cj j j j jCRm G G L L G G� (24)

 where   j j jd G u  is the forward relationship and  ju  is the slip vector at integration elements.

In the discretization using fuzzy basis functions, we consider the same data as  jd  and try to recover the 
slip vector  ju  at the final learning epoch. By replacing  jA  from Equation 22 in Equation 19, the model 
resolution matrix in the fuzzy method  ,j FRm  becomes:

        2 1
, ( )T T T

Fj j j j j jFRm W GW GW LW LW GW G� (25)
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In this case, the Gaussian and regularization points are collocated, therefore we omit the subscript, reg from 

 jW .

Figure 14 compares the resolution matrices of cases (1) and (2). The results show that the increased stability 
of the neuro-fuzzy inversion method reduces the resolution of the model. As expected, model resolution 
and stability cannot be improved simultaneously. In order to obtain a more reliable model, we must relax 
model resolution.

5.7.  Computational Demand

More fuzzy basis functions will result in a higher resolution of the SVFs, particularly at higher frequencies, 
provided that Green's functions and data noise do not limit the predictive power of the forward relationship. 
However, increasing the number of fuzzy basis functions will also increase computation time.

The most time-consuming part of our inversion is the back-propagation (gradient-descent) nonlinear step 
of hybrid learning. The number of calculations is directly related to the number of connections between 
consecutive layers of the ANFIS network. The total number of computations for the back-propagation step 
equals    ( )( )N N N N . Thus, the computation time for the gradient descent step alone if (   6, 6N N )  
is almost 3.4 times more than if (   4, 4N N ). Our average CPU time for one epoch of learning for 
  6, 6N N  is 2.7 s on an Intel(R) Core i5-7400 CPU@3.00 GHz, whereas for   4, 4N N  the average 

CPU time is 0.82 s (on the same machine). Because in this formulation, we solve independent inverse prob-
lems for different frequencies the method can be easily parallelized.

5.8.  Multidimensional Scaling

In order to rank the solutions of the SIV benchmark exercises provided by different authors, Razafindrakoto 
et al. (2015) proposed a multidimensional scaling (MDS) analysis. MDS quantifies the differences between 
the models obtained by inverse modeling and the true slip function. The aim of MDS analysis is to map dis-
similarities between models to Euclidean space, which can be of any dimension but is usually taken as 2D 
or 3D, such that similar/dissimilar models appear as close/far from each other and can be easily visualized. 
The dissimilarity between slip functions is quantified using a dissimilarity metrics computed for each pair 
of slip models. Razafindrakoto et al. (2015) proposed normalized-square and gray-scale metrics for the MDS 
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Figure 13.  Four hypothetical cases used to study the effect of increasing the number of (a) Gaussian integration points and (b) the density of regularizing 
points. Case #1: Each integration element has one Gaussian point,  1gaussN , and the distance between regularizing points is 2 km,   2rx  km. Case #2: 

  2, 1gauss rN x  km, Case #3:   3, 0.5gauss rN x  km, Case #4:   4, 0.25gauss rN x  km. (c) L-curves, at  
9 0.25

32
f  Hz, for the four cases shown above. 

In all cases, we used   6, 6N N  fuzzy basis functions. The red circles indicate the maximum curvature points. Increasing the modeling accuracy and the 
power of the regularizing condition allows for a more appropriate selection of the damping parameter.

Figure 14.  Resolution matrix at 0 Hz. (a) Resolution of a classical finite fault inversion ( 0,CRm ), (b) Resolution of 
the fuzzy inversion after 500 learning epochs ( 0,FRm ). In the fuzzy inversion, the resolution is decreased in order to 
increase stability.
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analysis. The SIV project (Mai et al., 2016) provides an online toolbox for MDS analysis (http://equake-rc.
info/SIV/sivtools/show-scalar-metrics/MDS/inv1/), which allows to compare a given slip model with the 
true SIV1 slip distribution using the normalized-square metric. Figure S12 shows that the slip model in-
ferred from the fuzzy inversion using 36 fuzzy basis functions (   6, 6N N ) is ranked as a good solution. 
The dissimilarity matrix shows that our method has a dissimilarity index of 7.44 with respect to the original 
SIV-1, being ranked as the second most similar model to the target after the model of Fan et al. (2014) (fsg, 
with a dissimilarity index of 3.07).

5.9.  Further Developments

The method presented here represents a first step in a new direction that allows for better-posed inversions. 
The neuro-fuzzy inversion methodology can be applied to any geophysical inverse problem described by 
a Fredholm integral of the first kind, namely gravity field inversion, fault geometry determination using 
InSAR data, etc. One important improvement will be to link the slip models at different frequencies, which 
will further regularize the problem, helping to stabilize the slip patches. As emphasized by Fan et al. (2014), 
one consequence of formulating the kinematic source problem in the frequency domain is the possible loss 
of causality in the retrieved solution. Particularly this refers to the obtained phase of the source spectrum. In 
essential, only time-domain inversion methods, such as Progressive Inversion Strategy (PIS) (Sánchez-Rey-
es et al., 2018), can explicitly enforce the rupture causality. To prohibit this loss of causality, we probably 
need to apply a more advanced time-frequency analysis. However, this has not been examined in the cur-
rent formulation and requires more thorough consideration.

6.  Conclusions
We presented a new finite-fault inversion scheme based on machine learning techniques. The inversion is 
carried out in the frequency domain. At each frequency, the spatial slip distribution is described as a func-
tion of a few fuzzy adaptive basis functions, which evolve to allow the most proper fit to data. Thus, the 
spatial discretization uses only a small number of model parameters. The adequate adaptive basis functions 
and their amplitudes are found using an Adaptive Network-based Fuzzy Inference System (ANFIS). The 
learning of the ANFIS is regularized as to optimize the smoothness of the spatial slip distributions. The 
parameterization of the spatial slip distributions allows to decrease substantially the number of parameters, 
which strongly decreases the ill posedness of the inverse problem. Using ANFIS for model approximation, 
we can separate the forward integration mesh from the regularization mesh, thus providing numerical 
stability to the method. By means of GSVD analysis, we discuss the conditions under which the inversion 
is well or ill posed. Adequate damping coefficients   are selected from L-curves that display sharp corners. 
This allows to select a proper set of generalized singular values that render the problem well posed. The pro-
posed method evolves continuously toward smoother models that generate better data fits. In the work pre-
sented in this study, we worked with a noise-free dataset. In the companion work (Kheirdast et al., 2020), 
we show an application with real data. Due to the trade-off between well posedness and resolution, the 
proposed method has a lower resolution than conventional finite-fault models, which rely on large num-
bers of model parameters. The MDS analysis shows that our method provides a reliable model, with a good 
similarity to the true slip function.

Appendix A:  List of abbreviations
ANFIS	 Adaptive neuro fuzzy inference system
CPU	 Central processing unit
FIS	 Fuzzy inference system
GA	 Genetic algorithms
GF	 Green's Function
GMF	 Gaussian membership function
GNSS	 Global navigation satellite system
GPS	 Global positioning system
GSVD	 Generalized singular value decomposition
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InSAR	 Interferometric synthetic-aperture radar
LOOCV	 Leave one out cross validation
MCMC	 Markov Chain Monte Carlo
MDS	 Multidimensional scaling
MF	 Membership Function
PSO	 Particle swarm optimization
SIV	 Source inversion validation
SVF	 Source velocity (slip-rate) function

Data Availability Statement
Data used in this study can be accessed from the SIV project (Mai et al., 2016) website from the download 
page through (http://equake-rc.info/sivdb/wiki/Downloads).
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